Prompt: <lora:toricchi-000n00:1> toricchi, duck
Negative prompt: worst quality, low quality
accelerate launch --num_cpu_threads_per_process 1 sdxl_train_network.py --config_file=D:\data\c3lier-toricchi-xl5\config.toml
[model_arguments]
pretrained_model_name_or_path = "D:\\data\\model\\sdXL_v10.safetensors"
[additional_network_arguments]
network_train_unet_only = true
cache_text_encoder_outputs = true
network_module = "networks.lora"
[optimizer_arguments]
optimizer_type = "AdamW"
learning_rate = 1e-4
network_dim = 2
network_alpha = 1
[dataset_arguments]
dataset_config = "D:\\data\\lora-toricchi-xl5\\dataset.toml"
cache_latents = true
[training_arguments]
output_dir = "D:\\data\\lora-toricchi-xl5\\output"
output_name = "toricchi"
save_every_n_epochs = 100
save_model_as = "safetensors"
max_train_steps = 10000
xformers = true
mixed_precision= "bf16"
gradient_checkpointing = true
persistent_data_loader_workers = true
keep_tokens = 1
[dreambooth_arguments]
prior_loss_weight = 1.0
[model_arguments]
pretrained_model_name_or_path = "D:\\data\\model\\sdXL_v10.safetensors"
[additional_network_arguments]
network_module = "networks.lora"
[optimizer_arguments]
optimizer_type = "AdamW"
learning_rate = 1e-4
network_dim = 16
network_alpha = 1
[dataset_arguments]
dataset_config = "D:\\data\\lora-toricchi-xl5\\dataset.toml"
cache_latents = true
[training_arguments]
output_dir = "D:\\data\\lora-toricchi-xl5\\output"
output_name = "toricchi"
save_every_n_epochs = 10
save_model_as = "safetensors"
max_train_steps = 1000
xformers = true
mixed_precision= "bf16"
gradient_checkpointing = true
persistent_data_loader_workers = true
keep_tokens = 1
[dreambooth_arguments]
prior_loss_weight = 1.0
[general]
enable_bucket = true
[[datasets]]
resolution = 1024
batch_size = 1
[[datasets.subsets]]
image_dir = 'D:\data\c3lier-toricchi-xl\toricchi'
caption_extension = '.txt'
num_repeats = 1
U-NETのみ学習 | テキストエンコーダーも学習 | |
---|---|---|
学習ステップ低 | 学習画像の形状が反映されにくい、絵柄は反映される | 学習画像の形状が反映されやすい |
学習ステップ高 | 学習画像の形状が反映されるが崩れが若干多い | 学習画像の形状が反映される、元のモデルの絵柄が上書きされる印象 |